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Abstract 

A family of upper  bounds  to error probabilities of coded systems  on  the  additive  white  Gaussian 
noise  channel was recently proposed by  Divsalar 171. Their  calculation  depends  only  on  the  weight 
spectrum  of  the code zuords. Wefirs t  elaborate upon  these  bounds  to  show  how  they  can  beftlrther 
tightened by using  numerical  integration instead of a Chernofbound,  and  by  reducing  the  number 
of code words  to be included  in  the  bound.  Next,  we  extend  them  to  fading  channels. 

1 Introduction  and  motivation of the  work 

During the  years, much effort has been spent  in the search for  close approximations to  the er- 

ror probability of systems in which coding is used in conjunction with maximum-likelihood 

decoding (here we are  especially interested in linear binary codes, so we shall restrict our at- 

tention  to  these without  any  further  stipulation). In many cases, the union  bound provides 

a useful tool  for the prediction of system performance at intermediate-to-high signal-to-noise 

ratios (SNR). This is easy to  compute, and requires only the knowledge of the weight spectrum 

of the  code;  however, it becomes  too  loose, and hence  useless, when the SNR approaches the 

value at which the cutoff rate Ro of the channel equals the  code rate R,. 

The  recent discovery of an easily decodable family of codes with  good error properties 

even beyond the channel cutoff  rate, and close  to  capacity [6, 81, has rekindled the interest in 

bounds that overcome the Ro-limitation of the union bound, while keeping the upsides of it. 

Specifically, these new  bounds should be  easily computed, and  should depend only on the 

weight spectrum of the  code:  the latter property is  especially important  in view of the fact 

that with turbo codes only the weights, averaged with respect  to the possible  choices of the 
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interleaver,  are usually available. For  recent work in this  area,  see,  for  example, [9, 10, 14, 15, 

16, 17, 18, 20,21, 221. 

Of late, a  new family of upper  bounds  was proposed in [7]. This family turns  out to  yield the 

tightest known approximation to the error probability of turbo codes with large block length. 

In  this manuscript we elaborate on this  family of bounds, by  showing  how  it can be fur- 

ther tightened through numerical integration (to be used instead of Chernoff bounding)  and 

through riddance of a  number of unnecessary terms. Moreover, we extend these bounds to  the 

fading channel. The paper is organized as follows. In Section 2 we  expound the new  bounds 

for the additive Gaussian noise  (AWGN)  channel, and its improvements. In Section 3 we derive 

bounds for  the fading channel,  while in Section 4 some examples of application are shown. 

2 AWGN channel bounds 

Consider transmission of a geometrically-uniform signal constellation X, with / X /  = M, over 

the AWGN channel, modeled in the  form 

y = y x + n  (1) 

where x, y, and n are n-dimensional real  vectors; in particular, x E X denotes the transmitted 

signal vector, y the received  vector, n a  random noise  vector whose components are Gaussian 

random variables with  mean zero and common variance 1, and y is a  known constant. We also 

assume that the code word components take on values f l ,  so that all signal vectors have equal 

energy 
2 I /  x / I  = n  

With maximum-likelihood (ML) decoding, the word error probability when x was trans- 

mitted does not  depend  on x due to our assumption of a geometrically-uniform constellation. 

It can be written in the form r 1 
(3) 

where {x --i 2 }  denote the ”pairwise error event,” i.e.,  the probability that  when x is transmit- 

ted  the distance between the received  vector y and fi‘ is smaller that the distance between y and 
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The union in (3)  is extended to  all signals vectors 2 # x. Notice that the set of y such that 

{x -+ 2 }  occurs  is a half-space in R", the  locus of the points whose distance from x equals the 

distance from 2. 

The number of terms in the union of (3) can be reduced if we remove all the painvise error 

events that can be written as unions of other events. In particular, the minimum  number of 

terms occurs if we keep only the signal vectors x that are defined as follows. 

Define the Voronoi  region of x as the set of vectors in the  Euclidean n-dimensional space 

that are  closest  to x than to any other 2/ that is 

The  Voronoi  region  is a convex polytope in R", the intersection of the half-spaces described 

above. The number of facets in this polytope is usually much lower that AI: for this reason it 

is convenient to  remove the redundancy from (5) and redefine V by using only the inequalities 

that are strictly necessary. To do this, we define  the set of (Voronoi) nezghbors of x as the minimal 

set N such that 

v = { y E R ' 2  : ~ ~ y - x ~ ~ ~ ~ ~ y - 2 ~ ~ >  V%N} (6) 

The  vector x itself does not belong to N. 

Based on this definition of N, we can rewrite the error probability in the form 

Now, the union includes only IN/ terms, the minimum possible number. 

For future reference, we can derive from (7) a "minimal" union bound  by writing 

A bound tighter than (8) can be obtained as  follows. Let d denote the generic  Euclidean 

distance of Z from x, and partition N into equivalence  classes of vectors with the same value of 

d.  Denote  these by Nd, and write 

AWGN channel bounds 3 
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where TI is  the set of distances from x of the vectors in X, and 

is  the probability that, when x is transmitted, at least one 2 at distance d is nearer to y than x. 

2.1 Characterizing N 

The characterization of N is a well-studied problem  (see,  e.g., [l, 2,3, 131). Although it gener- 

ally  requires knowledge of the code structure beyond its weight spectrum, useful bounds are 

available.  Let X be a linear block code with components 0 , 1  and parameters n, k .  If w denotes 

the weight of the code word 2, and w,in the minimum  Hamming weight of the  code, then the 

following theorem [2] yields simple bounds to N. Here we let x be the all-zero code word, so 

that the  Euclidean distance from x of a code word  with  Hamming weight w is 2J.l .  

Theorem. For any binary linear block  code 

Moreover, if the weight 11) f 0 of % cannot be written as 711 = i + j ,  where i 2 1, j 2 1, and i, j 

are actual weights of words of X, then 2 E N. 

For example, as an immediate consequence of (ll), for a linear block code we can rewrite (9) as 

The bound above  can be further tightened by using the rest of the Theorem. An algorithm is 

also  available  [1]  to derive the elements of N if the  code words can  be listed. For  example, 

from  tables in [l] we can infer that N for  the  (31, 21) BCH code contains 107,198 words, while 

/ X /  = 2,097,152.  The number of words expurgated from the computation of the bound  may 

consequently be very large, especially when the rate of the code  is greater than 1/2 (see  [2]). 

We should also observe that the words excluded have large distances (in fact,  from  the 

Theorem we see that all the words not in N have a Hamming weight w 2 2dn1in): thus, the 

effect of this expurgation would be  especially  felt at low  signal-to-noise ratios. 

AWGN channel bounds 4 
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2.2 The new bound 

We now compute an upper  bound to P ( e )  based on (9). To do this, use a technique advocated 

by  Gallager in [ll] and express P[e,l]  as 

~[eczl = %h Y E 3 2 1  + q e d ,  Y $ 321 (13) 

Further,  observe that 

w e d ,  Y @ 321 5 PLY $ a1 (14) 

where for the RHS  to  be a good approximation of the LHS one should choose X in such  a  way 

that the two regions fR (the complement of 2 in &X7') and U;iENcL {x + %} have about the same 

shape and size. In practice,  the  selection of 32 should be guided by computational simplicity. 

The new  bound is based on the  choice  for 2 of an n-dimensional hypersphere centered at yrlx 

and with radius f i R .  The parameters 7 and R will be selected so as to obtain the tightest 

possible bound (notice that in general q and R will depend  on d ) .  

By using (14) in (13) we obtain the upper  bound 

q4 5 w % ,  Y E 21 + P[Y @ 321 (15) 

2.2.1 Computation of P[y $ 3 2 1  

Let us compute the second term in 

P[Y 3 2 1  

the  RHS of (15) first. We have 

where we have defined the RV 
n 

k= 1 

To calculate (16), or  to approximate it,  we  first determine the function 

By observing that, under the assumption that x was transmitted, we have y = yx + n, that the 

components of n are independent RVs with  mean zero and variance 1, and that 1 1  x 1 1 2 =  n, we 

obtain 
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where 

This  converges in a vertical strip cy1 < Q < a2 of the complex s-plane bounded  by the closest 

poles of Q, ( s )  . 

The  exact value of (16) and an  upper  bound can be determined as described in Appendix A. 

2.2.2 Computation of P[ed, y E X ]  

We have 

The corresponding Chernoff bound takes  the form 

where g( .;  .. . ) was defined in (20), and 

Moreover, Ad is  the number of code words at  Hamming distance d from x. (For turbo codes, it 

will denote the average number of code words over  all  possible interleavers.) 
If we  select the value of enR2 that minimizes  the  Chernoff bound, and  we define  for nota- 

tional simplicity 
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we obtain the neat  bound 

and 

A discussion of the relations between this new  bound, the union  bound,  and other previ- 

ously derived bound can be found in [7]. Using modified  Gallager bound [7] the  factor e”(P) 

in the bound can be ignored. This bound can  be used for bit error probability if A d  is replaced 

by E, Y A , , d  in the bound [7]. 

2.3 Tightening  the  bound  by Q(  . )  function 

3 Fading  channel bounds 

Here we assume a frequency-flat,  slow-fading channel. To obtain an  appropriate mathematical 

model for  it, we  must consider two factors,  viz.,  the  coherence  time of the physical channel and 
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the  presence of a delay constraint. The  combination of these two factors dictates the choice of 

the model. 

Consider first  the  coherence  time;  this  is the inverse of the Doppler spread. The product of 

the  coherence  time T,: and the data rate (in symbols per second) yields the number L of trans- 

mitted symbols that are  affected approximately by the same fading gain. As an order of magni- 

tude, for many wireless systems the values of the  coherence  time range from 0.01 to 1 s, while 

the data rates range from 20 to 200 k symbols per second. Consequently, L 2 20,000x0.01 = 200 

symbols. If the transmitted code word has length 7 1 ,  we  may obtain that for  each symbol to  be 

affected  by an  independent fading gain we should use an interleaver spanning  at least n L  sym- 

bols.  Hence, the actual delay involved may become very large (on the order of n.Tc). Now, in 

some applications large delays are  unacceptable  (for  example,  real-time speech requires a de- 

lay not exceeding 100 ms). Consequently, in the presence of delay constraints in the system 

an n-symbol  code word will be  affected  by  less than 71, independent  fading gains. In the fol- 

lowing we shall consider separately the two limiting cases of no delay constraint (and hence 

fading affecting independently every transmitted symbol: the "independent fading channel") 

and stringent delay constraint (and hence fading affecting independently every transmitted 

code word: the "block fading channel"). In both cases  we assume that the receiver has perfect 

knowledge of the fading gain affecting  the transmission, also known as "channel-state infor- 

mation." 

3.1 Block fading channel 

The channel model here  is described by  the equation 

y = y a x  + n (32) 

where LV is the fading gain, a  random variable (RV) which we shall assume to  be  Rayleigh- 

distributed with E [ d ]  = 1, i.e., to have the probability density function 

By observing that (32) differs  from (1) only for the presence of the random gain a, if ~ ( y )  denotes 

the error probability for a given signal constellation  over the AWGN channel with parameter 7, 

then the error probability for  the same constellation transmitted over the block fading channel 

is given by 

P(,) = L b ( @  d l  (34) 
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where E a [  . ]  denotes expectation with respect  to  the RV a. In particular, any  bound  on p(y) 

is transformed into a bound for  the  block fading channel by taking its expectation after the 

transformation "/ + N y. The expectation can be evaluated numerically for example by using 

Laguerre quadrature formulas. 

3.2 Independent fading channel 

The model here is 

y = yax + n (35) 

where a = diag (a1 ~ 0 2 ;  . . . ? a,) is the diagonal matrix of the fading gains affecting  the  com- 

ponents of the transmitted vector x. We use here the upper bound, derived from (15), 

3.2.1 Selection of the region 32 

Notice  first that the  decision  metric in this case  is  based on the minimization of the norm 

The simplest region suggested by (37) is a sphere with  radius f i R  centered at qyax ,  where 

q and X are parameters to  be optimized: 

However, the resulting bound is not tight. 

Another  choice is that of an ellipsoid, obtained by  rescaling each coordinate of y so as  to 

compensate the effect of fading and centered at rlyx: 

where q and I? have to  be optimized. This  choice does not seem to lead to  feasible  analytical 

computations. 

Yet another choice  consists of a sphere centered at a point obtained by  a linear transforma- 

tion of y a x :  

x = {y 1 I /  y - Ayax / I 2 <  nR2} (40) 
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where A and R are to be optimized. A simple choice  for the transformation represented by A 

is a rotation and a rescaling, corresponding to a diagonal A all of whose elements on the main 

diagonal being equal to < & ~ :  

where <, $, and R are now the parameters to be optimized. Notice that in this case we have 

In the following we present the bounds resulting from  this  choice of 3. 

3.2.2 The new bound 

where 

n 1 
1 - p( l  - 27.45) 

- 

(1 - P ) ( l  - P )  
This bound  should be minimized with respect  to 4, p ,  p ,  and T .  The minimum  with respect  to 4 
can be obtained in  a closed-form, then the remaining minimizations must be performed numer- 

ically.  The bound can  be further tightened by replacing p[ed] with min{P[ed] , A d ;  Jo’ [ S d 0 + $  . I Iddo} .  

Also, as it will be discussed in the next section, the factor e”(P) can be ignored. 

The suboptimum choice p = P = 1, 7. = 0, and 4 = 0.5 yields 

(45) 

which is the exponent of the union bound. Thus, the union bound becomes  useless when this 

exponents equals zero, that is, when 

Fading channel bounds 10 
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For large  block length and  random codes  we have 

111 Ad = H(d / /L )  - (1 - R,) 111 2 
n 

so that 

and the minimum SNR  for the validity of the bound turns out to  be 

Since 22 = 2Rc€b/No, this corresponds to 

(47) 

which is the cutoff rate of the independent Rayleigh fading channel. 

Numerical calculations show  that for R, = l / 2  the new  bound can predict the error prob- 

ability  above 3.06 dB, while the  cutoff rate is 4.515 dB. Thus, the new  bound outperforms the 

union bound by 1.5 dB (it should also  be  noticed that the capacity for a rate-1/2 code is 1.8 dB). 

When R, + 0, the union-bound validity threshold is 1.46 dB, while the new  bound is  valid up 

to -1 dB.  This indicates that the new  bound is tighter for low-rate codes. 

4 Union type bounds for modified Gallager bounds 

For an ( n  k )  block  code e, with xin E (2, let’s divide the codewords {xrn/> with  Hamming 

distance d from transmitted codeword x,, into subsets x d ,  d = 0 ,1 ,2 ,  . . . n. Cardinality of 

these sets are jxcl/ = A d ,  where Ad is  the number of codewords at  Hamming distance d from 

xrn. In the following when the random variables  are continuous the should be replaced by 

f .  Gallager in [12] proposed a second bounding technique on  word error probability given by 

This bound  was further upperbounded by Duman and Salehi [lo] as follows:  Define a non- 

negative function f ( y )  that represent a density function i.e. x,  f (y)  = 1 . Then for parameter 

0 5 p 5 1 the  above bound, using Jensen’s inequality can be upper  bounded as 

Union  type  bounds  for  modified Gallager bounds 11 
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Sason and Shamai [19] using calculus of variation and iterative method similar to that pro- 

posed  by  Gallager [11] obtained an optimum f ( ~ )  = nj f ( y j )  (with no symmetry constraint 

on f ( y ) )  for Duman  and Salehi upperbound. The bound is then applied to independent Rician 

fading channels with channel-state-information (CSI). 

Based on the bounding technique by  Duman  and Salehi in (52), the following bounds  in 

[7]  were obtained for any nonnegative function f(y),  0 5 p 5 1, s = - ~ p / ( l  - p )  2 0, T 5 0, 

x > o  

and a bound on the bit error probability was obtained [7] using method of indicator functions 

and Jensen’s  inequality. 

The upper  bound  on  word error probability except  for  factor eH(p)  is similar to the results 

by Gallager in 1111. These results establish the relation between the Gallager bounds  in [12] 

and in [ 111. Furthermore the  region X can be defined as 

This provides a geometric interpretation for the Gallager bound. Using  this  geometric interpre- 

tation, in [7] the following have been shown. The  region  for  Viterbi  Viterbi bound [21] is the 

same as in the tangential bound of Berlekamp [5]. The  region  for Duman Salehi bound [lo] is 
the  same  as our region, thus a closed  form solution to Duman Salehi bound  was obtained. For 

modified  Gallager bound, using a cone  region  as in the tangential sphere bound of Poltyerv 

1141 and Sason Shamai [15], a closed  form solution to simplified version of tangential sphere 

bound  was obtained. The exponents of these  closed  form bounds are identical to the exponent 
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of our simple bound. Thus asymptotically as  block size n + 00 the simple bound  should be as 

tight as  the tangential sphere bound. For more details see  [7]. 

Note that for s = 1, and x y  f (y)  = 1 the  modified  Gallager bound reduces to Duman Salehi 

bound (see 1191 ) . 

For binary input symmetric output discrete memoryless channels assuming f (y)  = n, .f(y,j), 

and f (y) = f (-9) * using calculus of variation as in Gallager [ll],  and minimizing the upper- 

bound  with respect to f (y )  the following results were obtained [7]. 

where 

and for  bit error probability 

where 

where 6 = d / n ,  r (6)  = +, ~ ( 6 )  = , X 2 2 ,  5 P 5 1) 0 5 p 5 1. For random 

codes it can  be shown  that p = 1, and X = & minimizes the bound, and the minimum SNR 

threshold coincides with capacity limit for random codes. P is the solution to the nonlinear 

equation 

In A In X,,, yAlu ,d  1 6  

which depends on values of p ,  X, and 6. Rather than solving this nonlinear equation, for  every 

p ,  X, and 6, P may be treated as a parameter to be optimized numerically to obtain maximum 

exponent for  each 6. 

'with  no  symmetry  assumption,  except for normalization of f(y), the  bound  reduces to Duman  Salehi-Sason 

Shamai  bound  in [ 191 
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I’(yl:G=l) where P(Y) = p o ,  and P(y lz )  is  the channel transition probability (likelihood func- 
tion). 

4.1 AWGN channel 

For binary input AWGN channel P ( y )  = e”2Ya, P(y1z = 0 )  = Le-$(Y-&I2 c = __ RcEb , and 

x ,  should be replaced by J. Let z = e-’Yfi, then we have 
6 N* 

4.2 Independent  fading  channel with CSI 

For independent fading channels such as Rician,  Rayleigh, Nakagami  with density p ( a ) ,  P ( y ,  a )  = 
e ” 2 c u Y ~ ,  P ( y l a ,  3; =c 0 )  = L , - i ( y - u . a ) 2 ,  and 

& 

where fading samples a are known  at the receiver (with CSI), and E { a 2 }  = 1. 

We further simplify  these  expressions  for  Rayleigh fading channels as, 

Union type  bounds  for modified Gallager botmds 14 
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4.3 Independent fading channel with no CSI 

For independent fading channels with density p(a ) ,  if the fading samples a are not provided 

to  the  receiver (no CSI), and E ( a 2 }  = 1, then 

(69) 

and P ( d  = m. P(yl.c=l)  So we can still use  the results for  AWGN (see the following equations) 

by  replacing the likelihood functions for AWGN with the likelihood functions for independent 

fading with no CSI. 

For  Rayleigh fading case we have 

4.4 Examples 

The simple bound for  AWGN channel was used to obtain the ML word error probability of rate 

1 /2  (n,j,k) Low  Density Parity Check  (LDPC) Codes as shown in Fig. 1. In the example rate 

1/2 (n,j,k)  Low  Density Parity Check  codes  for n=10000, and j=3,4,5,6 k=2j are considered. 

In the second example, as shown in Fig. 2, the simple bound for  AWGN channel is applied 

to obtain the ML performance of rate 1 /4  Repeat  Accumulate (RA)  codes. Also in the Figure 

the performance of suboptimum iterative turbo decoder for RA codes are shown. 

In  the third example,  as shown in Fig. 3, the simple bound for  Rayleigh fading channel is 

applied to obtain the ML performance of rate 1/4 Repeat Accumulate (RA) codes. Also in the 

Figure  the performance of suboptimum iterative turbo decoder for RA codes over independent 

Rayleigh fading with CSI are shown. 
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i 
10“ ~ 

10-7 

10-8 = 

i 
j ,  k ,  (EbiNo) 

threshold 
3, 6. 0.793981 
4, 8, 0.426358 
5, 10, 0.341239 h-4-“ 
6 ,  12, 0.318004 -“-Q.lol*, ”” 

7 

Eb/No, dB 

4 

Figure 1: Performance of low density parity check  codes using the simple closed form bound 

for AWGN 
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0.0 0.5 1 .o 1.5 2.0 2.5 3.0 3.5 4.0 

E blN o 

Figure 2: ML upperbound  on the  bit error probability of rate 1 /4  RA codes using the simple 

closed  form bound for AWGN, and the performance of suboptimum iterative turbo decoder 
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100 
\ 

1 Input block size = 1024 
i 

1 .o 1.5 2.0 2.5 3.0 3.5 4.0 

EbINo 

Figure 3: ML upperbound  on the  bit error probability of rate 1/4 RA codes using the simple 

bound for  Rayleigh fading, and the performance of suboptimum iterative turbo decoder 
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A Numerical  calculations 

Computing P[X 5 01 

The computation of P[X 5 O] can  be performed as follows.  Define first the function 

This  converges in a vertical strip ~1 < Q < a2 bounded  by the  closest poles of @ x  ( s ) .  Then  the 

Chernoff bound on P[X 5 01 has the form 

for X real and belonging to the convergence  region of (73).  The minimum is unique due to  the 

convexity of the restriction of @ x ( s )  to the real  axis [4, p. 7031. 

For the  exact evaluation of P[X 5 01 we  may use  the procedure described in [4, pp. 704-7051. 

Observe first the equality from  Laplace-transform theory: 

where the change of variables w = c d m / x  has been made; next, use the Gauss-Chebyshev 

integration rule 

to obtain 
+ rt 

where 

Observe that the calculation of (78) could be further simplified by observing that the left-hand 

side of the equation is  real;  however,  to  take advantage of this observation one has to evaluate 

separately the real and the imaginary part of @ X  (s) ,  which might not be an easy task. 

Numerical  calculations 19 
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Then  the  Chernoff bound  on P[X 5 0, Y 5 O] has the  form 

for X, ,u real and belonging to the convergence  region of (80). 

Exact evaluation of P[X 5 0; Y 5 01 can be done as  follows: 

To compute numerically the integral above, rewrite (82) as 

where the change of variables w = C ~ = / I I :  and 'UI = dd-/y has been made; next,  use 

the  Gauss-Chebyshev product-integration rule to obtain 

where 

Numerical  calculations 20 
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B Voronoi regions for  the fading channel 

Here  we prove that the reduction of the union bound based on the structure of the  Voronoi 

regions of the  code  is  feasible  also when the fading channel (32) is considered. We prove this 

by showing that the pairwise error probabilities with fading can  be written as the probabilities 

of crossing  the same hyperplanes as  for  the AWGN channel. 

Observe first that with channel-state information the maximum-likelihood detection rule  is 

Thus  we have, by observing that / /  a x  / /  has the same value for all x and defining the unit-step 

function u [ . ]  and the random vector z 4 a z :  

Voronoi regions for the fading channel 21 
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